780=8+x(2x-6)

Simple and best practice solution for 780=8+x(2x-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 780=8+x(2x-6) equation:



780=8+x(2x-6)
We move all terms to the left:
780-(8+x(2x-6))=0
We calculate terms in parentheses: -(8+x(2x-6)), so:
8+x(2x-6)
determiningTheFunctionDomain x(2x-6)+8
We multiply parentheses
2x^2-6x+8
Back to the equation:
-(2x^2-6x+8)
We get rid of parentheses
-2x^2+6x-8+780=0
We add all the numbers together, and all the variables
-2x^2+6x+772=0
a = -2; b = 6; c = +772;
Δ = b2-4ac
Δ = 62-4·(-2)·772
Δ = 6212
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6212}=\sqrt{4*1553}=\sqrt{4}*\sqrt{1553}=2\sqrt{1553}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{1553}}{2*-2}=\frac{-6-2\sqrt{1553}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{1553}}{2*-2}=\frac{-6+2\sqrt{1553}}{-4} $

See similar equations:

| 37=3v-8 | | 2.8+3.9r=H | | -25-3r=-5(1+4r)-3 | | 16+y=31 | | 9+10x-7=3x+4+5x | | 8x-4=8(6x-9) | | 12=-4m | | 5(7x-6)=2+3x | | (3x)+(6x-5)+x=180 | | 2(f-4)=28 | | 75=(4x-25)=180 | | 300-(x/15)=0 | | -8x+3(1+8x)=35+8x | | (2x+4)+48=90 | | -3a-12a+5+6a-10=11-7a-6-2a-4a | | 5x+14x=157.50 | | (v=5)(-1/9)=6 | | 7(-3-3n)=147 | | (4=g)(-11)=121 | | 1/4x-1/8(4/1+2/1x)=-1/2 | | 4a+1=-15 | | -5p+2=4p-30 | | 4(-3r-8)=-104 | | 3(4x+3)=1.89 | | 3=x(2x+1) | | 5r+r+7=2+2r+5 | | (x+57)+(x-15)+x=180 | | 4a+1/3=5 | | -2+6x=-1+x+3+6 | | 75=(4x-25)=90 | | 75+2x=130-3x | | 2c^2-c+8=0 |

Equations solver categories