If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7831674183216438271+90/56x=x+x*20
We move all terms to the left:
7831674183216438271+90/56x-(x+x*20)=0
Domain of the equation: 56x!=0We add all the numbers together, and all the variables
x!=0/56
x!=0
x∈R
90/56x-(+x+x*20)+7831674183216438271=0
We get rid of parentheses
90/56x-x-x*20+7831674183216438271=0
We multiply all the terms by the denominator
-x*56x-(x*20)*56x+7831674183216438271*56x+90=0
We add all the numbers together, and all the variables
-x*56x-(+x*20)*56x+7831674183216438271*56x+90=0
We multiply parentheses
-1120x^2-x*56x+7831674183216438271*56x+90=0
Wy multiply elements
-1120x^2-56x^2+20x+90+4.3857375426012E=0
We add all the numbers together, and all the variables
-1176x^2+20x+101.92167066644=0
a = -1176; b = 20; c = +101.92167066644;
Δ = b2-4ac
Δ = 202-4·(-1176)·101.92167066644
Δ = 479839.53881493
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-\sqrt{479839.53881493}}{2*-1176}=\frac{-20-\sqrt{479839.53881493}}{-2352} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+\sqrt{479839.53881493}}{2*-1176}=\frac{-20+\sqrt{479839.53881493}}{-2352} $
| 8x–2=4x+14 | | 3a=17-4a. | | 3x^2+48x+23=0 | | F(x)=18-2 | | 8x^2+36+30=10-×^2 | | 3(4c-9)-8=73 | | 2/3(1/4x-2)=1/5(4/3-1) | | x+7=–17 | | –(2–x)–4(x+5)=8x | | 6t+39=15 | | 40÷1/2=p | | 4w=4-21 | | 5+(4-t)=2t | | y2–5y=0 | | y2–5y=0 | | y^2–5y=0 | | 5+2x-x^2=4 | | 3y=24‐6y,y | | x+7=12+2 | | 3y=24-6yy | | 31=2c+1 | | 3x–5=5x+9 | | 3(5x+1)+6,5=5(3+4x) | | 0.2(3x+1)=x+3 | | (2x+5)=(50-x) | | (2x+5x)x=420 | | x+2(-1)=16 | | 3(16+-2y)-2y=8 | | 0,0438=0,1x+0,25x^2 | | 35+3x+4=7-3x-2x | | 3(x-4)-15=2(x-5)-10 | | 8x+6=10x+12 |