78=(8x+7)(4x-1)

Simple and best practice solution for 78=(8x+7)(4x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 78=(8x+7)(4x-1) equation:



78=(8x+7)(4x-1)
We move all terms to the left:
78-((8x+7)(4x-1))=0
We multiply parentheses ..
-((+32x^2-8x+28x-7))+78=0
We calculate terms in parentheses: -((+32x^2-8x+28x-7)), so:
(+32x^2-8x+28x-7)
We get rid of parentheses
32x^2-8x+28x-7
We add all the numbers together, and all the variables
32x^2+20x-7
Back to the equation:
-(32x^2+20x-7)
We get rid of parentheses
-32x^2-20x+7+78=0
We add all the numbers together, and all the variables
-32x^2-20x+85=0
a = -32; b = -20; c = +85;
Δ = b2-4ac
Δ = -202-4·(-32)·85
Δ = 11280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11280}=\sqrt{16*705}=\sqrt{16}*\sqrt{705}=4\sqrt{705}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{705}}{2*-32}=\frac{20-4\sqrt{705}}{-64} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{705}}{2*-32}=\frac{20+4\sqrt{705}}{-64} $

See similar equations:

| 2(x+7)=-3(2x+3)-1 | | 0.06(y-7)+0.02y=0.18y-0.6 | | 2.4x+5–7.4x=1 | | −7( | | 4x^2+61x-98=0 | | -6(-8x+6)+8(-4+x)=-12 | | 2x-23=43 | | 3x+(-2)=(-29) | | 180=x+(0.5x+3) | | 4^-x=4.2 | | 2.4x+5–7.4x=15 | | 4^-x=4. | | -5(a-3)=-55 | | -10=5(x+3)+3(x+5) | | 0.20x+3=9-0.60 | | 5(3u-4)=6 | | x+97+43=180 | | 3x+(-2)=29 | | (9b/5)=b+8 | | -12-2n-5=-2n-14 | | -8=+b/6 | | -2(m-5)=12 | | 5/4b+7=7/8b+9 | | 180=x+(1/2x+3) | | 10-15/7+x=57/7+x | | 2(x+7)=3(2x+3)-1 | | |x+4|=-1/9 | | 8-9t=9t-15 | | -8+8b=6b-14 | | d/2+2=-3 | | 100x^2+3=28 | | 4g=200 |

Equations solver categories