If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7X^2+4X-20=0
a = 7; b = 4; c = -20;
Δ = b2-4ac
Δ = 42-4·7·(-20)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-24}{2*7}=\frac{-28}{14} =-2 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+24}{2*7}=\frac{20}{14} =1+3/7 $
| 7x+3x+3=23 | | 7x=x-21 | | 4(x+90=-16 | | 9y+8=4y–7 | | 14-8b=80-2b | | -6v+17=7v+17 | | -4r-24=-6r | | 17-2v=-8v-43 | | 72=4z-8(z-11) | | -83=4u+8u+13 | | -6b-10(b-8)=-80 | | -66=5(s-11)-6s | | A={x/x+7=13} | | -9(r-8)-2=43 | | -4c+72=5c | | -27=3(a-3) | | q=9–4 | | -6=-4s-2s | | -4(w-4)=-12 | | -15=-10y+7y | | 13+4(t+1)=5 | | -5(c+6)+18=33 | | 8(10+a)=40 | | -x-x-1=-3x-2x-5 | | -6z+3z=6 | | -7=2s-5 | | 4x+9=6x=3 | | 76=10-6y | | 45=5(7+u) | | -(n+5)=3n+15 | | 9y–7.5–7.5y+5=0 | | 51=3-8u |