If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7(5Y^2)=31
We move all terms to the left:
7(5Y^2)-(31)=0
a = 75; b = 0; c = -31;
Δ = b2-4ac
Δ = 02-4·75·(-31)
Δ = 9300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9300}=\sqrt{100*93}=\sqrt{100}*\sqrt{93}=10\sqrt{93}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{93}}{2*75}=\frac{0-10\sqrt{93}}{150} =-\frac{10\sqrt{93}}{150} =-\frac{\sqrt{93}}{15} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{93}}{2*75}=\frac{0+10\sqrt{93}}{150} =\frac{10\sqrt{93}}{150} =\frac{\sqrt{93}}{15} $
| t3-3t2+3t-1=0 | | 12-6x=1,5 | | 3+5×(2x-1)=-12 | | x2-10+25=0 | | -4(z-4)=20 | | 15/6=20/r | | t2+8t+16=0 | | 16(-2x+6)-3(18x-3)=4(-4x-17) | | (2s^2-1)^2=225 | | 16(-2x+6)-3(18x-3)=4(-4x-17)-16·2x+16·6-3·18x+3·3=-4·4x-4·17 | | X+(1/3x)=49 | | (2x+1)2+(x+1)=6x+47 | | -5(y+3)=20 | | 12(x+5)-(5x+3)=-2(13x-12) | | 35x=0 | | 12(x+5)–(5x+3)=–2(13x12) | | 4^(x-1)=0.5 | | v-1/3=43/5 | | 7+3x×6=66 | | x2+x+0,25=0 | | 16(–2x+6)–3(18x–3)=4(–4x–17)–16·2x+16·6–3·18x+3·3=–4·4x–4·17 | | X2+x+1/4=0 | | 25x2-10x=0 | | Y^2+16y+4=0 | | 3x-32=100 | | 10x+3-6x-17=6x+15 | | 8x2-22x-21=0 | | –4x=12 | | 64x2-9=0 | | x/3=1^1/2 | | 4=x+26/5 | | x/3=11/2 |