7a(a-2)-6=2a+8+a

Simple and best practice solution for 7a(a-2)-6=2a+8+a equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7a(a-2)-6=2a+8+a equation:


Simplifying
7a(a + -2) + -6 = 2a + 8 + a

Reorder the terms:
7a(-2 + a) + -6 = 2a + 8 + a
(-2 * 7a + a * 7a) + -6 = 2a + 8 + a
(-14a + 7a2) + -6 = 2a + 8 + a

Reorder the terms:
-6 + -14a + 7a2 = 2a + 8 + a

Reorder the terms:
-6 + -14a + 7a2 = 8 + 2a + a

Combine like terms: 2a + a = 3a
-6 + -14a + 7a2 = 8 + 3a

Solving
-6 + -14a + 7a2 = 8 + 3a

Solving for variable 'a'.

Reorder the terms:
-6 + -8 + -14a + -3a + 7a2 = 8 + 3a + -8 + -3a

Combine like terms: -6 + -8 = -14
-14 + -14a + -3a + 7a2 = 8 + 3a + -8 + -3a

Combine like terms: -14a + -3a = -17a
-14 + -17a + 7a2 = 8 + 3a + -8 + -3a

Reorder the terms:
-14 + -17a + 7a2 = 8 + -8 + 3a + -3a

Combine like terms: 8 + -8 = 0
-14 + -17a + 7a2 = 0 + 3a + -3a
-14 + -17a + 7a2 = 3a + -3a

Combine like terms: 3a + -3a = 0
-14 + -17a + 7a2 = 0

Begin completing the square.  Divide all terms by
7 the coefficient of the squared term: 

Divide each side by '7'.
-2 + -2.428571429a + a2 = 0

Move the constant term to the right:

Add '2' to each side of the equation.
-2 + -2.428571429a + 2 + a2 = 0 + 2

Reorder the terms:
-2 + 2 + -2.428571429a + a2 = 0 + 2

Combine like terms: -2 + 2 = 0
0 + -2.428571429a + a2 = 0 + 2
-2.428571429a + a2 = 0 + 2

Combine like terms: 0 + 2 = 2
-2.428571429a + a2 = 2

The a term is -2.428571429a.  Take half its coefficient (-1.214285715).
Square it (1.474489798) and add it to both sides.

Add '1.474489798' to each side of the equation.
-2.428571429a + 1.474489798 + a2 = 2 + 1.474489798

Reorder the terms:
1.474489798 + -2.428571429a + a2 = 2 + 1.474489798

Combine like terms: 2 + 1.474489798 = 3.474489798
1.474489798 + -2.428571429a + a2 = 3.474489798

Factor a perfect square on the left side:
(a + -1.214285715)(a + -1.214285715) = 3.474489798

Calculate the square root of the right side: 1.863998336

Break this problem into two subproblems by setting 
(a + -1.214285715) equal to 1.863998336 and -1.863998336.

Subproblem 1

a + -1.214285715 = 1.863998336 Simplifying a + -1.214285715 = 1.863998336 Reorder the terms: -1.214285715 + a = 1.863998336 Solving -1.214285715 + a = 1.863998336 Solving for variable 'a'. Move all terms containing a to the left, all other terms to the right. Add '1.214285715' to each side of the equation. -1.214285715 + 1.214285715 + a = 1.863998336 + 1.214285715 Combine like terms: -1.214285715 + 1.214285715 = 0.000000000 0.000000000 + a = 1.863998336 + 1.214285715 a = 1.863998336 + 1.214285715 Combine like terms: 1.863998336 + 1.214285715 = 3.078284051 a = 3.078284051 Simplifying a = 3.078284051

Subproblem 2

a + -1.214285715 = -1.863998336 Simplifying a + -1.214285715 = -1.863998336 Reorder the terms: -1.214285715 + a = -1.863998336 Solving -1.214285715 + a = -1.863998336 Solving for variable 'a'. Move all terms containing a to the left, all other terms to the right. Add '1.214285715' to each side of the equation. -1.214285715 + 1.214285715 + a = -1.863998336 + 1.214285715 Combine like terms: -1.214285715 + 1.214285715 = 0.000000000 0.000000000 + a = -1.863998336 + 1.214285715 a = -1.863998336 + 1.214285715 Combine like terms: -1.863998336 + 1.214285715 = -0.649712621 a = -0.649712621 Simplifying a = -0.649712621

Solution

The solution to the problem is based on the solutions from the subproblems. a = {3.078284051, -0.649712621}

See similar equations:

| -9(-10x+14)=324 | | 20=-2n | | 2(y+5)=4 | | 190=8x^2 | | 8a=80 | | -7n-14=7(7n+6) | | 8=80 | | -4(3x+5)-1=-2(x+1)+3x | | (5)=25 | | -4+.5z=5 | | -5(-8x+4)=-420 | | 8888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888+1= | | 11-6n=7(1-n) | | 6y+z=bc-2y | | m^2=3x+54 | | -5(5x-2)=-115 | | 547438328283747374746757487485874857475+274747565657575757575= | | 4x^2+20=O | | 12x+2x-4=14x+3x | | 6(2x+1)=-24-3x | | M+n+2p=3 | | -8(-9x+7)=592 | | .5a=9 | | (2t-1)/6=12 | | 10+5x=5x+10 | | 8(18)=12(12) | | 9d+2+3d-4=5d | | -9(-9x+17)=-558 | | 4r-16=-4(3r+4)+7r | | -10=7x-9 | | 6c-3+4c= | | (5+10)x=x(5+10) |

Equations solver categories