If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7c^2-17c-12=0
a = 7; b = -17; c = -12;
Δ = b2-4ac
Δ = -172-4·7·(-12)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-25}{2*7}=\frac{-8}{14} =-4/7 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+25}{2*7}=\frac{42}{14} =3 $
| 8x+9=-71 | | -3x+(-4)=2x+8-5x | | -5w2+23-(29-4w2+9)=0 | | 6(y+5)=6(y-3) | | 2+30=-2x+4 | | (0.6*x+3)/(x+20)=0.5 | | 4/5n=6/7 | | 7=y4−-4 | | 10y=y+9y | | 6(2x+4)-2x=2(5x-4) | | x/3-1.8=-2.4 | | 7=y4− -4 | | -1/4-(-3/5)=x | | 3x-36/16-3x-18/12=4 | | 77x-88=11(7x-8) | | 9x+2(2-x)=7x+4 | | 3(2x+14)+x=15-(-9x-5) | | x^(1/2)-3-x^(1/4)-3=2 | | √x-3-x^(1/4)-3=2 | | -1(z+5)=14 | | -3(5-t)=10 | | (x-7)+11/3=2(x+9) | | 4p-6p-5p=1-5 | | 32x+49=32x=36 | | 4p-11p=4 | | -9x-2=24-9x | | 32x49=32x+36 | | 2(3x+1)=4(2x+3) | | 2.7=5.5-0.4x | | 37-6x=15+5x | | 0.03(54)+0.12x=0.06(x+54) | | -2x^2-3x+56=0 |