If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7j^2+12j+5=0
a = 7; b = 12; c = +5;
Δ = b2-4ac
Δ = 122-4·7·5
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2}{2*7}=\frac{-14}{14} =-1 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2}{2*7}=\frac{-10}{14} =-5/7 $
| (3x+5)-(2x+1)=25 | | 2x−2=8 | | f2–16f+15=0 | | 3x+4-(5x)=x+5 | | -45-6x=20-x | | 392xN=40000 | | 2z+12=6z-16 | | 2x+15=3x+41 | | (-3n+3)=(n^2-25) | | -14-6x=-3x+7 | | 392xN=40,000 | | 6w+17=8w-1 | | 4x-2/3=-4/3x | | -65+2x=19-5x | | 3^x=144 | | -4x-16=32+2x | | (2x-9)/(x+8)=0 | | 4z=z+12 | | 3x-10=-x+18 | | n+22.5=49.25 | | R(p)=-20p²=24000p | | 5=x/13 | | 35=x200 | | 2x+3/3=5-4x/2 | | x^2+9x-216=0 | | 6n=2n-3 | | x+0.2x=20 | | 1/3×x=2/3 | | √5x-6=x | | x+62=90-x | | 8.2=2.6-8x | | x^2-6x+75=2 |