If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7k^2+10k+3=0
a = 7; b = 10; c = +3;
Δ = b2-4ac
Δ = 102-4·7·3
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4}{2*7}=\frac{-14}{14} =-1 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4}{2*7}=\frac{-6}{14} =-3/7 $
| 3(x-3)-4=5 | | 6=(x-2)/4 | | 2*1/7p=-3 | | 1/4(x+8)=x+2 | | 41—2+p=−53—4 | | 2h2+5h+2=0 | | 9x+5+4x+50=180 | | -5(3x-9)=15x+45 | | 5x+9=x+29 | | p/2+4=2 | | 50=1/2h(2+3) | | k+-72=23 | | 4c-3=9(c+3) | | k+-11=-59 | | 1.2(w=5)=3 | | 3(p+2)-7p=18p= | | -16=x+6/3 | | 13+w/7=-7 | | u+51=-16 | | 5x^2-9=-49 | | 410=22/7*6²h | | 6x/10÷4/4-x=-21 | | 9/7=x/8 | | 5=1/5(4x+5) | | 2^(2x)-6*2^(x)+8=0 | | 12/6=x/4 | | x/9-4=-12 | | 79=-u | | 15+x/7=-56 | | 3x-2/2x+3=3x-12x+1 | | 125m-75m+39000=40800-150 | | (4x+8)/9=4 |