If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7m(m+5)=56
We move all terms to the left:
7m(m+5)-(56)=0
We multiply parentheses
7m^2+35m-56=0
a = 7; b = 35; c = -56;
Δ = b2-4ac
Δ = 352-4·7·(-56)
Δ = 2793
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2793}=\sqrt{49*57}=\sqrt{49}*\sqrt{57}=7\sqrt{57}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-7\sqrt{57}}{2*7}=\frac{-35-7\sqrt{57}}{14} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+7\sqrt{57}}{2*7}=\frac{-35+7\sqrt{57}}{14} $
| x=31/2*4 | | 10=20x/3 | | 12y-9y=63 | | 8-5x=2x-(4x+x) | | 15x-4=3x-12 | | 100=230x | | 3-7d=-18 | | 8x-2=6x-5 | | x*0.4=2000 | | x*0.4=2720 | | x*0.4=2960 | | x*0.4=2320 | | x*0.4=3120 | | (3x-7)^2-(5x-2)(5x+2)+32=(4x-1)(4x-1) | | X+x+2/x+1/4+1=100 | | (0.10x)+(4.95)=8.65 | | 11(m-3)-30=3 | | -150=50-(x/2) | | Y=360°×x | | 250=50+(x/2) | | a^2-32a+81=0 | | 3x*2+2x+7=20 | | -3a^2-21a-18=0 | | 2x^2=5x=2 | | 2(2+4b)=2b-8 | | x/4x+8=20 | | 16x-35=7x-18 | | 6(3x-7)=42 | | x-0,15x=13 | | 2000=4x3+-140x2+1200x | | 6k^2-k=12 | | 7x^2+10=46 |