If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n(3n+8)=0
We multiply parentheses
21n^2+56n=0
a = 21; b = 56; c = 0;
Δ = b2-4ac
Δ = 562-4·21·0
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-56}{2*21}=\frac{-112}{42} =-2+2/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+56}{2*21}=\frac{0}{42} =0 $
| x+x+1+x+2=339 | | 8(3x-2)-2(x-3)=4(4x+5)+18 | | 10/x=25/15 | | 13/10=d/30 | | x/30=13/10 | | 2(w+8)+2w=52 | | 42=(2w+5)w | | 2(2w)+2w=72 | | 2y-3=2y | | 8y-8y+3=-24 | | 2(2x+5)-4x=11 | | 3y-2(6+y)=5y | | 7y-7y+2=-14 | | 3x+2x+x=350 | | 4(2)+3y=26 | | 3x+2(5)=31 | | 4(18+y+6)=4 | | 30x+3=2x-5 | | 10x−4=6 | | 3x−12=0 | | 8x2+15x+2=0 | | 6x^2-11x-10=25 | | x2-12x-160=0 | | 63-(11y-4y)=0 | | 4/y+7/y=74 | | b²-b-30=0 | | b∧2-b-30=0 | | 1y-2y=10 | | 28=11x-7x | | 17r-4r^2=15 | | -440+30x=20 | | 60x=50x-1540 |