If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2+13n+6=0
a = 7; b = 13; c = +6;
Δ = b2-4ac
Δ = 132-4·7·6
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-1}{2*7}=\frac{-14}{14} =-1 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+1}{2*7}=\frac{-12}{14} =-6/7 $
| 3/2(x-6)=3 | | |x-9|=6 | | 2(x+5)+3x=3x+20 | | v2-9v+14=0 | | 3x+5=5x–1 | | 3m=8m–110 | | 16x^2-34x+16=0 | | 4/5t=75/32 | | Y=2x^2+9x+1 | | (30×x)÷4=48 | | -6y-34=-2(y+9) | | 5x-1=1/2x+18 | | -c/2-3=24 | | 8=-18+3/8-(16-40n) | | -5x+10-4x=-17 | | 2/5-7=12/5x-2x+3 | | 65+(11x−17)=180 | | x-2/8=9 | | 5p+5+5=-2+7p | | n2=2.25 | | (2x-20)=90 | | 90+y=110 | | z+2/3=3 | | .6(-5x+6)+11x=-(-2x+3) | | 0,4(x+5)=0,5(3-x)=2,5 | | u/3=8 | | (2x-3)(5x-1)-5x(2x-3)+16x=3 | | 6=4-2p | | -20=x/8 | | 14(h-959)=140 | | 0.5y^2=450 | | 7x=12=-4x+78 |