If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2+16n+15=2n^2+3
We move all terms to the left:
7n^2+16n+15-(2n^2+3)=0
We get rid of parentheses
7n^2-2n^2+16n-3+15=0
We add all the numbers together, and all the variables
5n^2+16n+12=0
a = 5; b = 16; c = +12;
Δ = b2-4ac
Δ = 162-4·5·12
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4}{2*5}=\frac{-20}{10} =-2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4}{2*5}=\frac{-12}{10} =-1+1/5 $
| 3x/5-8=x | | 1+2x3=X | | 7x+8x=(x-2) | | -3(-3x)-4(x-7)+3(7-2x)=0 | | (2x-3)(6+3x)=0 | | 13(-x+2x-1)=3(4x+13)-4 | | 13(-x+2x-1)=3(4x+13)-2·2 | | 13(-x+2x-1)=3(4x+13)-2·2ç | | 1+7(-20+x)=2(2x+1) | | -10x+5=-6x-8 | | 49x-9x-8+4x=42(2+x) | | 7x·7-9x-8+4x=42(2+x) | | 4x-5-3(7-2x)=13x-26+135 | | -6x=132-3x | | -2x·3=-44(-3)-3x | | -3x-2-3(-1-2x)=-42-2(-x+1)+2 | | 6/7x=5 | | 3x+2-(4x-1-9x)=6x-81 | | -52+11(-5x-3)-x=2(60-x)-49x | | -5x-200+8x=-16x+600-x | | -5x-200+8x=-4·4x+600-x | | -5x-4·50+8x=-4·4x+1200/2-x | | -4x+3-20=-7x+100 | | -7(38-x)=7(38-x) | | -1560+5(4x+2)=-10(7+2x) | | -4x-(8x-2)+3x(-7)-3(2+x)=-1300 | | -(-7x+3)-87=-5(-2x-3) | | -(-7x+3)-29·3=-5(-2x-3) | | -(34+x)=-(-34-x) | | 66-6x+15+49x+3=40x-15 | | 66-6x+15+49x+3=20(2x)-15 | | -33(-2)-6x+15+49x+3=20(2x)-15 |