7p(p+1)=9-p

Simple and best practice solution for 7p(p+1)=9-p equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7p(p+1)=9-p equation:


Simplifying
7p(p + 1) = 9 + -1p

Reorder the terms:
7p(1 + p) = 9 + -1p
(1 * 7p + p * 7p) = 9 + -1p
(7p + 7p2) = 9 + -1p

Solving
7p + 7p2 = 9 + -1p

Solving for variable 'p'.

Reorder the terms:
-9 + 7p + p + 7p2 = 9 + -1p + -9 + p

Combine like terms: 7p + p = 8p
-9 + 8p + 7p2 = 9 + -1p + -9 + p

Reorder the terms:
-9 + 8p + 7p2 = 9 + -9 + -1p + p

Combine like terms: 9 + -9 = 0
-9 + 8p + 7p2 = 0 + -1p + p
-9 + 8p + 7p2 = -1p + p

Combine like terms: -1p + p = 0
-9 + 8p + 7p2 = 0

Begin completing the square.  Divide all terms by
7 the coefficient of the squared term: 

Divide each side by '7'.
-1.285714286 + 1.142857143p + p2 = 0

Move the constant term to the right:

Add '1.285714286' to each side of the equation.
-1.285714286 + 1.142857143p + 1.285714286 + p2 = 0 + 1.285714286

Reorder the terms:
-1.285714286 + 1.285714286 + 1.142857143p + p2 = 0 + 1.285714286

Combine like terms: -1.285714286 + 1.285714286 = 0.000000000
0.000000000 + 1.142857143p + p2 = 0 + 1.285714286
1.142857143p + p2 = 0 + 1.285714286

Combine like terms: 0 + 1.285714286 = 1.285714286
1.142857143p + p2 = 1.285714286

The p term is 1.142857143p.  Take half its coefficient (0.5714285715).
Square it (0.3265306123) and add it to both sides.

Add '0.3265306123' to each side of the equation.
1.142857143p + 0.3265306123 + p2 = 1.285714286 + 0.3265306123

Reorder the terms:
0.3265306123 + 1.142857143p + p2 = 1.285714286 + 0.3265306123

Combine like terms: 1.285714286 + 0.3265306123 = 1.6122448983
0.3265306123 + 1.142857143p + p2 = 1.6122448983

Factor a perfect square on the left side:
(p + 0.5714285715)(p + 0.5714285715) = 1.6122448983

Calculate the square root of the right side: 1.26974206

Break this problem into two subproblems by setting 
(p + 0.5714285715) equal to 1.26974206 and -1.26974206.

Subproblem 1

p + 0.5714285715 = 1.26974206 Simplifying p + 0.5714285715 = 1.26974206 Reorder the terms: 0.5714285715 + p = 1.26974206 Solving 0.5714285715 + p = 1.26974206 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-0.5714285715' to each side of the equation. 0.5714285715 + -0.5714285715 + p = 1.26974206 + -0.5714285715 Combine like terms: 0.5714285715 + -0.5714285715 = 0.0000000000 0.0000000000 + p = 1.26974206 + -0.5714285715 p = 1.26974206 + -0.5714285715 Combine like terms: 1.26974206 + -0.5714285715 = 0.6983134885 p = 0.6983134885 Simplifying p = 0.6983134885

Subproblem 2

p + 0.5714285715 = -1.26974206 Simplifying p + 0.5714285715 = -1.26974206 Reorder the terms: 0.5714285715 + p = -1.26974206 Solving 0.5714285715 + p = -1.26974206 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-0.5714285715' to each side of the equation. 0.5714285715 + -0.5714285715 + p = -1.26974206 + -0.5714285715 Combine like terms: 0.5714285715 + -0.5714285715 = 0.0000000000 0.0000000000 + p = -1.26974206 + -0.5714285715 p = -1.26974206 + -0.5714285715 Combine like terms: -1.26974206 + -0.5714285715 = -1.8411706315 p = -1.8411706315 Simplifying p = -1.8411706315

Solution

The solution to the problem is based on the solutions from the subproblems. p = {0.6983134885, -1.8411706315}

See similar equations:

| 2(x-1)=-4x+34 | | 15x=-5(3x+7) | | 11w=-16+7w | | 2x+3-2=3x+4-(-4) | | x^2+32=0 | | -32=-4b | | 5(x-1)=-2x+30 | | 11z+7=-21+13z | | 10n-7=83 | | 4(x+1)+36=-4x | | 5x^2-28x-12=0 | | x^2-16=15x | | -4(3-2x)+2x=2x-8 | | 15=3(2x-3) | | 3x-6=2(x+4) | | -6x+14=-13x+10 | | 8y-41=39-12y | | 15p+1=12+4p | | 38(p-1)+2(p-3)=-4 | | y=8-4x | | 40+.1x=30+.3x | | 9a-10=7a | | 19x=646 | | 5x+4=-3x-24 | | 17x-26=11x+51 | | 5b=30 | | 20=4a | | -x^2+8x-3=0 | | 81=9t | | 6(n)+-9=-15 | | 3x+3y=21 | | -12=3x+3 |

Equations solver categories