If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7p^2-38p-24=0
a = 7; b = -38; c = -24;
Δ = b2-4ac
Δ = -382-4·7·(-24)
Δ = 2116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2116}=46$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-46}{2*7}=\frac{-8}{14} =-4/7 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+46}{2*7}=\frac{84}{14} =6 $
| 5/3x-2/3=1 | | (3/2x-7/3)+(9/2x-5/3)=8 | | 5x+1=5x+10 | | 6(4x-3)=x+15 | | 35x+37(1-x)=35.5 | | 6/3=x+3 | | 1/3+x=-2/9 | | x2+6x=19 | | X+25/15=2/3x | | 370=-16x^2-4x+382 | | Y=-5x^2+20x+60 | | 5-1x+1=2 | | 26x+11=5(4x+1)+6x+6 | | 2(x+5)=(2x+106 | | x^2-12x+1728=0 | | 7/9(6x-36)+9=23 | | 2/3x+(-9)=-1 | | 7(x+3)-3(x+5)=10 | | n/2-1=10 | | 6(x-1)/9=2(x+8)/12 | | 15b2+4b-4=0 | | z+10/9=3 | | 9x-10=4x+35 | | 120+5x=45x | | (3/2x-7/3)+(9/2)x-5/3)=8 | | 10-4(x+6)=3 | | 6-7x-4=-60+5x-10 | | (x+12)=(x+14)–3 | | -6n-4=20 | | 5x-8=x+10 | | -6(7x-9)+7=-42x+61 | | –2m+13=2m–3 |