7q-(q-3)=3q+3q(q+1)

Simple and best practice solution for 7q-(q-3)=3q+3q(q+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7q-(q-3)=3q+3q(q+1) equation:



7q-(q-3)=3q+3q(q+1)
We move all terms to the left:
7q-(q-3)-(3q+3q(q+1))=0
We get rid of parentheses
7q-q-(3q+3q(q+1))+3=0
We calculate terms in parentheses: -(3q+3q(q+1)), so:
3q+3q(q+1)
We multiply parentheses
3q^2+3q+3q
We add all the numbers together, and all the variables
3q^2+6q
Back to the equation:
-(3q^2+6q)
We add all the numbers together, and all the variables
6q-(3q^2+6q)+3=0
We get rid of parentheses
-3q^2+6q-6q+3=0
We add all the numbers together, and all the variables
-3q^2+3=0
a = -3; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-3)·3
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6}{2*-3}=\frac{-6}{-6} =1 $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6}{2*-3}=\frac{6}{-6} =-1 $

See similar equations:

| -9-7x=-4/7 | | x/2-x/12+3=x+3 | | 5n-50=60 | | -4(2d+5)=8 | | 7x+6x-3x=16+4 | | 51-y=202 | | 5z-10=z+6 | | -7y-4=4yX(8-6)-64 | | 6n+9n–6n=-24+6 | | 2x+51=128 | | 5(b+3)-7(b+1)=-10 | | 1/2(4+1/4)=2(z+1/16) | | 2x2+11x+30=0 | | -.5(n-6)=-3 | | 19w+24=11 | | g(-7)=(-7)+2 | | 1+3(x+4)=5-x | | 49n+986=-43. | | -16x-20=14x+120 | | 49=9-8x | | 3a+5+2-a=60 | | 11x-6x+204=11x114 | | F(-3)=3(x)^2 | | 1/2x+1/4=-3(5/6x-1) | | (5x+1)°=180 | | 5x+4=43/4 | | 18+-13+n=-9 | | 14+x=46x=33 | | 3x+15=3x-7 | | {7}{4}h={1}{4}h-12h | | 2y+5=17.9 | | -6(x+10)-6=-3(x-2) |

Equations solver categories