If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7q^2-25q=0
a = 7; b = -25; c = 0;
Δ = b2-4ac
Δ = -252-4·7·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-25}{2*7}=\frac{0}{14} =0 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+25}{2*7}=\frac{50}{14} =3+4/7 $
| 2+7=16+m | | 10a-22=-2(1-3a | | 1/2c+3/4c=3/2c-2 | | 13=a/2 | | -3r=-r-20 | | 8+0.5x=0.2x-1 | | 8x^2+112x+392=8x2+112x+392 | | 5/8(x-15.6)=-9 | | 79=x+x | | 2n+1.5=10.5 | | 12y-18=4y+3/6 | | -107x-1+74=180 | | -8-6b=4-8b | | 4b+15=-1 | | 3x+20+11x-10=18x+1 | | y-(-7)=20 | | w=(10)(-3)(6) | | 9s+2+6s=30 | | 4(2b-5)+17=-3 | | -15+4f-7=12f+8 | | 4.4x+2.2=15.4 | | v-14=15 | | -5(x+3=25 | | 10+3+m=7-2 | | 20+8j=7j | | t/3=19.2 | | 4(2b-5)+1=-3 | | -6x+18=-7x-9 | | 1.25x+x=500 | | 45=c/3 | | y=85-5 | | 14q+6=15q+17 |