If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7q^2-28=0
a = 7; b = 0; c = -28;
Δ = b2-4ac
Δ = 02-4·7·(-28)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*7}=\frac{-28}{14} =-2 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*7}=\frac{28}{14} =2 $
| 3(m-2)-2(m-3)=12+m | | 5-x/2=-14 | | 3(m-2)-2(m-3)=21+m | | 9x+10=4x+39 | | (x-0.25)^2=3.0625 | | 5-2x=x-14 | | (x-0.25)^2=3.0.625 | | (x-0.25)^2=0 | | 7+2(g-3)+3(4-g)=51 | | 2x2=450 | | 8(3y-3)=72 | | 4-2x/3=5 | | 5(2y+1)=35 | | 11h-3=6h-5 | | 5g-3(g-6)=82-4g | | 3(x+2)+3x=2x-14 | | 3p-7-2(p-8)=24-3p | | 15=3+12x/11 | | 5x-4-3(9-x)=x+36 | | 5(3u+4)=80 | | 3x2+4x-4=0 | | 6(3+y)=42 | | 2c-3+8(c-4)=12-c | | 3^x=1.5 | | 5l-2+3(7-l)=82 | | a/4+8=15 | | 6x-30=4x | | .6x-30=4x | | 3x=2x-5(6-4x) | | x2-100=-19 | | (10x)+(2*1.5x)=170 | | x^2+14-16=0 |