If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7t^2+t=0
a = 7; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·7·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*7}=\frac{-2}{14} =-1/7 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*7}=\frac{0}{14} =0 $
| y2–8=0 | | 10-0.5x=(1/3)x | | v2–6v+1=0 | | 10-0.5x=1/3x | | 6=-6+4w | | 7w2–7w–8=0 | | 9z2+4z+5=0 | | 13x-2(3x-4)=1 | | 2u2–3u–3=0 | | 9r2+8r+5=0 | | Y=72,x=3 | | (20x-17)=180 | | x+2=3x+20 | | -12(c+6.2)=60 | | (180-x)/6.2=x | | 3x-61+2x+6=180 | | 3(4x-5)-6x=15 | | 6x-6+5x+8=104 | | 2x-30+3(2x-30)-54+4(3(2x-30)-54)-72=48 | | (10x+12)+(5x)=126 | | (10x+12)=126 | | -2x+41=2x+9 | | 282-x=623 | | 63=-3(-7+2x) | | 11x+18+5x+2=180 | | 9x-11/30=8x+23/45 | | 1/4-18=x | | 8t-16=12.8t/25.6 | | 13w+16w-6+2=-4w+2-6 | | 11x=45+2x | | 6x²+5x-1=0 | | x-4121=626 |