If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7v(7v) + -42 = -35v Remove parenthesis around (7v) 7v * 7v + -42 = -35v Reorder the terms for easier multiplication: 7 * 7v * v + -42 = -35v Multiply 7 * 7 49v * v + -42 = -35v Multiply v * v 49v2 + -42 = -35v Reorder the terms: -42 + 49v2 = -35v Solving -42 + 49v2 = -35v Solving for variable 'v'. Reorder the terms: -42 + 35v + 49v2 = -35v + 35v Combine like terms: -35v + 35v = 0 -42 + 35v + 49v2 = 0 Factor out the Greatest Common Factor (GCF), '7'. 7(-6 + 5v + 7v2) = 0 Ignore the factor 7.Subproblem 1
Set the factor '(-6 + 5v + 7v2)' equal to zero and attempt to solve: Simplifying -6 + 5v + 7v2 = 0 Solving -6 + 5v + 7v2 = 0 Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. -0.8571428571 + 0.7142857143v + v2 = 0 Move the constant term to the right: Add '0.8571428571' to each side of the equation. -0.8571428571 + 0.7142857143v + 0.8571428571 + v2 = 0 + 0.8571428571 Reorder the terms: -0.8571428571 + 0.8571428571 + 0.7142857143v + v2 = 0 + 0.8571428571 Combine like terms: -0.8571428571 + 0.8571428571 = 0.0000000000 0.0000000000 + 0.7142857143v + v2 = 0 + 0.8571428571 0.7142857143v + v2 = 0 + 0.8571428571 Combine like terms: 0 + 0.8571428571 = 0.8571428571 0.7142857143v + v2 = 0.8571428571 The v term is 0.7142857143v. Take half its coefficient (0.3571428572). Square it (0.1275510204) and add it to both sides. Add '0.1275510204' to each side of the equation. 0.7142857143v + 0.1275510204 + v2 = 0.8571428571 + 0.1275510204 Reorder the terms: 0.1275510204 + 0.7142857143v + v2 = 0.8571428571 + 0.1275510204 Combine like terms: 0.8571428571 + 0.1275510204 = 0.9846938775 0.1275510204 + 0.7142857143v + v2 = 0.9846938775 Factor a perfect square on the left side: (v + 0.3571428572)(v + 0.3571428572) = 0.9846938775 Calculate the square root of the right side: 0.992317428 Break this problem into two subproblems by setting (v + 0.3571428572) equal to 0.992317428 and -0.992317428.Subproblem 1
v + 0.3571428572 = 0.992317428 Simplifying v + 0.3571428572 = 0.992317428 Reorder the terms: 0.3571428572 + v = 0.992317428 Solving 0.3571428572 + v = 0.992317428 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-0.3571428572' to each side of the equation. 0.3571428572 + -0.3571428572 + v = 0.992317428 + -0.3571428572 Combine like terms: 0.3571428572 + -0.3571428572 = 0.0000000000 0.0000000000 + v = 0.992317428 + -0.3571428572 v = 0.992317428 + -0.3571428572 Combine like terms: 0.992317428 + -0.3571428572 = 0.6351745708 v = 0.6351745708 Simplifying v = 0.6351745708Subproblem 2
v + 0.3571428572 = -0.992317428 Simplifying v + 0.3571428572 = -0.992317428 Reorder the terms: 0.3571428572 + v = -0.992317428 Solving 0.3571428572 + v = -0.992317428 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-0.3571428572' to each side of the equation. 0.3571428572 + -0.3571428572 + v = -0.992317428 + -0.3571428572 Combine like terms: 0.3571428572 + -0.3571428572 = 0.0000000000 0.0000000000 + v = -0.992317428 + -0.3571428572 v = -0.992317428 + -0.3571428572 Combine like terms: -0.992317428 + -0.3571428572 = -1.3494602852 v = -1.3494602852 Simplifying v = -1.3494602852Solution
The solution to the problem is based on the solutions from the subproblems. v = {0.6351745708, -1.3494602852}Solution
v = {0.6351745708, -1.3494602852}
| x+14+(2x-14)+90=180 | | -3x-8=7x+12 | | n(n)=-18-9n | | 2x-1+3y+5=1+y-4x | | 11y+13=46 | | 3-3*6-4*5+7=-28 | | -x^2+4x-1152=0 | | 3x+9y=-9 | | 27=7u+2u | | 3(2x+1)=-5+3x | | 7x+14=289 | | 5-2x=-29 | | -4(3(-4)-8)= | | 18l+12=48 | | b+y=14 | | -4(5-x)+x=-60 | | 5y+1=3y+12 | | 7p+22=50 | | X^2(4X)=14 | | X^2(4X-3)=11 | | N=100-50(x-1.00) | | -2(-5-x)+x=39 | | .625x=275 | | 3[n+7]=16 | | x^3-3x^2+18x+56=0 | | -p+7=25-7p | | 4X^3-3X^2=11 | | -3(2x+5)=-6+3x | | .8x=125 | | 5(x+3)-(8n+9)= | | .666666x=100 | | 1+2x+6=6x-5 |