If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7v^2+1=29
We move all terms to the left:
7v^2+1-(29)=0
We add all the numbers together, and all the variables
7v^2-28=0
a = 7; b = 0; c = -28;
Δ = b2-4ac
Δ = 02-4·7·(-28)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*7}=\frac{-28}{14} =-2 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*7}=\frac{28}{14} =2 $
| 7(3x-6)=6(3x-6) | | 7^4x-3=21 | | 13x-2=7x+4=10x+4 | | -7n2=-448 | | 32/36=x+3/x+6 | | 8x-(4+3)=x+1 | | 3x=17-2x | | -1/2(5x-8)-4=10 | | 13x-2=7x+4=10x4 | | 8(x-0.75)=$62.00 | | 6x+8(106-8x)=36 | | 14040-50x=12500x+20 | | 3.75+x=9½ | | Z+4(2z+3)=30 | | 1.1n-8.3=2.6 | | 5.2x=16.9 | | 17=r/24 | | 1500=50(x-10) | | 17=d/23 | | 180-x=x-16 | | 16={4}{3}(5x+15) | | (4x+10)+(x+30)=180 | | 12=j/23 | | 9(4-7x)=54 | | 7.6x-1.3=44.3 | | h+3/5=2 | | 12(2c)+18c=198 | | v-5.96=9.42 | | 17=f/29 | | 27=d/23 | | 26=q/26 | | 3(2+6)=5v+16 |