7w+6+2w=-12w(w+2)

Simple and best practice solution for 7w+6+2w=-12w(w+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7w+6+2w=-12w(w+2) equation:



7w+6+2w=-12w(w+2)
We move all terms to the left:
7w+6+2w-(-12w(w+2))=0
We add all the numbers together, and all the variables
9w-(-12w(w+2))+6=0
We calculate terms in parentheses: -(-12w(w+2)), so:
-12w(w+2)
We multiply parentheses
-12w^2-24w
Back to the equation:
-(-12w^2-24w)
We get rid of parentheses
12w^2+24w+9w+6=0
We add all the numbers together, and all the variables
12w^2+33w+6=0
a = 12; b = 33; c = +6;
Δ = b2-4ac
Δ = 332-4·12·6
Δ = 801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{801}=\sqrt{9*89}=\sqrt{9}*\sqrt{89}=3\sqrt{89}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-3\sqrt{89}}{2*12}=\frac{-33-3\sqrt{89}}{24} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+3\sqrt{89}}{2*12}=\frac{-33+3\sqrt{89}}{24} $

See similar equations:

| x+8+104=180 | | F(c)=31 | | k/30-2=3 | | ?x2=54 | | 7w+6+2w=12(w+2) | | 8/x14=14/28 | | 94=m+25 | | 44=c+12 | | ?x2=55 | | 3(r-589)=678 | | 21/4r=10r= | | 42=5b+b | | g+17=22 | | 9x-25=190 | | c+1=100 | | b+43/2=1 | | x/2–6=2.5 | | 45+f=56 | | 72=2x+x^2 | | w-75=4 | | 2x–6=2.5 | | 303=-19-14y | | -8(8m-3)+7(m-1)=17 | | 56=7(y-1) | | 5x+5=3x+11→x=3 | | n+12=59 | | -7(f-92)=-14 | | -3(4x-6)=78 | | x.2+3x=11 | | 2x+9=3x→x=1 | | j+18=58 | | y-10/6=9 |

Equations solver categories