If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7w-40=(4w-18)+(w+19)(1/2)
We move all terms to the left:
7w-40-((4w-18)+(w+19)(1/2))=0
We add all the numbers together, and all the variables
7w-((4w-18)+(w+19)(+1/2))-40=0
We multiply parentheses ..
-((4w-18)+(+w^2+19*1/2))+7w-40=0
We multiply all the terms by the denominator
-((4w-18)+(+w^2+19*1+7w*2))-40*2))=0
We calculate terms in parentheses: -((4w-18)+(+w^2+19*1+7w*2)), so:We add all the numbers together, and all the variables
(4w-18)+(+w^2+19*1+7w*2)
determiningTheFunctionDomain (+w^2+19*1+7w*2)+(4w-18)
We get rid of parentheses
w^2+7w*2+4w-18+19*1
We add all the numbers together, and all the variables
w^2+4w+7w*2+1
Wy multiply elements
w^2+4w+14w+1
We add all the numbers together, and all the variables
w^2+18w+1
Back to the equation:
-(w^2+18w+1)
-(w^2+18w+1)=0
We get rid of parentheses
-w^2-18w-1=0
We add all the numbers together, and all the variables
-1w^2-18w-1=0
a = -1; b = -18; c = -1;
Δ = b2-4ac
Δ = -182-4·(-1)·(-1)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-8\sqrt{5}}{2*-1}=\frac{18-8\sqrt{5}}{-2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+8\sqrt{5}}{2*-1}=\frac{18+8\sqrt{5}}{-2} $
| 7w-40=(4w-18)+(w+19)1/2 | | 5=60/x | | x=-13=-45 | | 3/3=n/15 | | 12c—19c-17c-20c=18 | | -36=(v+4)×(2v-11) | | 7w-40=(4w-18)+(w+19)/2 | | 19=5n−1 | | (6e+1)(3e2-5e+7)=0 | | 7w-40=(4w-18)+(w+19) | | 8(u+3)+3=99 | | 1r(r)+12=1r+6+1r(r)-2r | | (5x+1)(x+2)=(x-1)(3x-2) | | (8x-12)-(15x-10)=-80 | | 0,3x+1=0,7x-3 | | 4(s-84)+57=97 | | 19x-31=11x-1 | | 15t-15t+t=10 | | x⁴-7x²+6=0 | | 1/2-1/8q=9-1/4 | | -10k+13k+-10=20 | | 20+4x-2=-48 | | –3t=–5t−8 | | 2y-5=-6 | | x+2x+8=x | | 15s-4s-10s+2s-2s=7 | | 20=2πr | | 4/12x=7 | | 3x−2=13 | | 5x-4/2-7x+3/4=1 | | 2t-t+3t=4 | | 10u-6u-3u+4u+u=18 |