If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7w^2+3w-7=0
a = 7; b = 3; c = -7;
Δ = b2-4ac
Δ = 32-4·7·(-7)
Δ = 205
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{205}}{2*7}=\frac{-3-\sqrt{205}}{14} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{205}}{2*7}=\frac{-3+\sqrt{205}}{14} $
| 8x2+8x+2=0 | | X^2-17x+15=-6x-3 | | -8(8x-4)=-96 | | -195=-6+7(3x-3) | | 17-2x=3+5x | | 5x+6x-4=3x-6-10 | | 5u2+5u-1=0 | | 2v+17=43 | | -3x=-2x-6 | | -8j=-10−7j | | 5u2+5u–1=0 | | 6z=10+7z | | 5+8(-a-4)=-91 | | 9u2-6u+4=0 | | -87=-7+8(6+2r) | | 1,5x+18=19,5 | | 7n^2+42n+35=0 | | -87=5(-2n-3)-2 | | 11x-30=8x+12 | | 34-6k=-9(8k-7) | | -2(1-6k)=82 | | X^2+5x-28=8 | | 4y-2y=13 | | X2+5x-28=8 | | x^2+100x+10000=0 | | 3p=128 | | 4n−2n+4=−1+17 | | 86=-2+4(-8+5v) | | -138=-6(7-8a) | | a^2+4a–12=0 | | 7(1-3r)=91 | | 0,01x+13=-0,12x |