7x(18x-20)=(8x+2)

Simple and best practice solution for 7x(18x-20)=(8x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x(18x-20)=(8x+2) equation:



7x(18x-20)=(8x+2)
We move all terms to the left:
7x(18x-20)-((8x+2))=0
We multiply parentheses
126x^2-140x-((8x+2))=0
We calculate terms in parentheses: -((8x+2)), so:
(8x+2)
We get rid of parentheses
8x+2
Back to the equation:
-(8x+2)
We get rid of parentheses
126x^2-140x-8x-2=0
We add all the numbers together, and all the variables
126x^2-148x-2=0
a = 126; b = -148; c = -2;
Δ = b2-4ac
Δ = -1482-4·126·(-2)
Δ = 22912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{22912}=\sqrt{64*358}=\sqrt{64}*\sqrt{358}=8\sqrt{358}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-148)-8\sqrt{358}}{2*126}=\frac{148-8\sqrt{358}}{252} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-148)+8\sqrt{358}}{2*126}=\frac{148+8\sqrt{358}}{252} $

See similar equations:

| 7(g-1)-4g=2g+9+3g-5 | | 58+x+90=180 | | 4x+15=3x(x+4) | | x2+0.4=−2.45 | | 34=12x | | 2x+21=6x-11 | | 6.7a=53.6 | | r2+0.4=−2.45 | | 19=-5+6v | | -5-7m-m=5m-5 | | 36=4.n | | 4z+2/3=-14 | | z+19=z-5 | | 9+a11=7 | | -14-15n=-17n | | 4=p+12/4 | | 28=4.n | | 7x(8x+2)=(18x-20) | | 10=7x+-3x-80 | | 20=14-6x | | a3+15=24 | | 14q-14=15q+3 | | 2x+22+2x+22+2x+22=180 | | x^2-4=-40 | | 12=z4+ 13 | | -2(j+-11)=14 | | 5x10=6x-7 | | 3−2(3x+0.8)=1.5(10−2x)+ | | x-15=-3x-1 | | X=-11y-140 | | 9x+65+70=180 | | (40+x)+80+65=180 |

Equations solver categories