7x(1x+2)=3(1x+12)-2

Simple and best practice solution for 7x(1x+2)=3(1x+12)-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x(1x+2)=3(1x+12)-2 equation:



7x(1x+2)=3(1x+12)-2
We move all terms to the left:
7x(1x+2)-(3(1x+12)-2)=0
We add all the numbers together, and all the variables
7x(x+2)-(3(x+12)-2)=0
We multiply parentheses
7x^2+14x-(3(x+12)-2)=0
We calculate terms in parentheses: -(3(x+12)-2), so:
3(x+12)-2
We multiply parentheses
3x+36-2
We add all the numbers together, and all the variables
3x+34
Back to the equation:
-(3x+34)
We get rid of parentheses
7x^2+14x-3x-34=0
We add all the numbers together, and all the variables
7x^2+11x-34=0
a = 7; b = 11; c = -34;
Δ = b2-4ac
Δ = 112-4·7·(-34)
Δ = 1073
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{1073}}{2*7}=\frac{-11-\sqrt{1073}}{14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{1073}}{2*7}=\frac{-11+\sqrt{1073}}{14} $

See similar equations:

| –35=7(x–3) | | 10x+1=9x+11 | | 25000+x+.05(x)=60000 | | 1/3(4/5+4x)=22/45 | | 22x-9=180 | | -3/7(3/7x+5/9)=-149/588 | | 3x-1+5=88 | | -6(8+a)=-30 | | 5k+34=-2+14k | | (10)=3x+7 | | 4-p=8 | | -5/6(-6+1/2x)=85/18 | | x3-7=-5 | | 2x²-24=8x | | 9y+15+6y+30=180 | | y/3,7-1.5=-2.8 | | 4(2x+3)-x=3x-2(6-x) | | 4u+8=6 | | 3x+6+2x+4=110 | | -9(t-2)=4(t-@5) | | 0.2+0.8=0.2+0.3x | | 3(2x-9)=-285/11 | | 2.1-5-2x=14+x-3 | | 6x10=30+x | | 3x+30+4x+24=180 | | -5(3x–4)=2(9–6x) | | -5(1x+3)=-55/3 | | 7x+2-28+30=33 | | -5(x+4)+5(x-2)=6 | | 2.1-5x-2x=14+x-3 | | -30=5(c-1) | | 3x+30=4x+24 |

Equations solver categories