If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x(2x+6)=0
We multiply parentheses
14x^2+42x=0
a = 14; b = 42; c = 0;
Δ = b2-4ac
Δ = 422-4·14·0
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-42}{2*14}=\frac{-84}{28} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+42}{2*14}=\frac{0}{28} =0 $
| 6v+90=180 | | u2-u-12=0 | | 7x+140=90 | | 2(x-3)+4(2x+1)=48 | | 4x+14=8x+10=180 | | y^+2y=63 | | 4x+14=8x10 | | 4x+5=10x-3 | | 5x=3x+60° | | 2b-24+68=180,b | | 6(x-2)=224 | | |2x-|60-2x||-x=0 | | (4x-2)+(3x+18)=156 | | (3m^2)-m-4=0 | | -5-15=10+20x | | -14=2(x–3) | | P-18/4=3-4p-3/2 | | 216=167-y | | (3p)/(8)-13=-25 | | 7y-29=-71 | | x/16-1=15 | | (3x-4)=(x+20) | | 0.3/4=9/y | | b/19-4b/19=9/19 | | 9+(n)/(5)=19 | | 100x+55=150x+51 | | n=2(15+15)-4 | | x4=2x | | n=2(19+19)-4 | | 3/16=x/8 | | (5)/(6)x-4=-2 | | 8+5n=7n+8 |