If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x(2x-1)=9x-1
We move all terms to the left:
7x(2x-1)-(9x-1)=0
We multiply parentheses
14x^2-7x-(9x-1)=0
We get rid of parentheses
14x^2-7x-9x+1=0
We add all the numbers together, and all the variables
14x^2-16x+1=0
a = 14; b = -16; c = +1;
Δ = b2-4ac
Δ = -162-4·14·1
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-10\sqrt{2}}{2*14}=\frac{16-10\sqrt{2}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+10\sqrt{2}}{2*14}=\frac{16+10\sqrt{2}}{28} $
| 36+2x=45 | | 5(a-2)=6(a+5)-6a | | 43=13+3x | | 5(a-2)=6(a+5) | | 16x+5-400=55 | | 6(r+7)=-6 | | 4(y-4)+3=3(y+7)=-30 | | 3x+16+103=180 | | 5.1n=12 | | -(2x-4)-3(x+5)=8x-3 | | 2n+1=n+5 | | x^2=4(x-3)^2 | | .615661475=13/x | | -4x-2=-x+3 | | -7x+10=-3x+46 | | 2x-7=-8-x | | 9x-40=-202 | | 9(r+10)=45 | | 0.4x=2x+.2 | | 1-5.3n=1.2-5.5n | | -7-36x=20-3x | | 8(b+4)=24 | | f-27=19 | | -22=8x+42 | | 22=2(12x-1) | | +18y=+66 | | 4(2x+1)=5x-13 | | 4n=-176 | | x(2x+1)=5x+2 | | 15c-2=43 | | 10−3j=1 | | 6c=2c+8 |