If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x(9x-26)=60
We move all terms to the left:
7x(9x-26)-(60)=0
We multiply parentheses
63x^2-182x-60=0
a = 63; b = -182; c = -60;
Δ = b2-4ac
Δ = -1822-4·63·(-60)
Δ = 48244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48244}=\sqrt{4*12061}=\sqrt{4}*\sqrt{12061}=2\sqrt{12061}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-182)-2\sqrt{12061}}{2*63}=\frac{182-2\sqrt{12061}}{126} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-182)+2\sqrt{12061}}{2*63}=\frac{182+2\sqrt{12061}}{126} $
| ((2x-5)-(2x-5)(x-5))/(x-5)=0 | | (2t-5)(t+2)=0 | | Tn=n2+5n+2 | | 2x+3x=267 | | 3(n+2)=2n+9 | | 12/1.5=x | | (x-2)/(x-5)+(x-3)/(x-5)=2x-5 | | 5e=11e- | | 1.36=2.27−2.32q+q2 | | 3n+75=50+20 | | 11/2*x=-12 | | 17x-2x^2+20=0 | | 2x+(277-x)=360 | | -19+c=51 | | (1/2)(2x-1)=-(1/9)-(4/9) | | 2x+(282-x)=360 | | 2x+(282-2)=180 | | 2(x-7)+(2x+34)=180 | | 2(x-7)+(2x+38)=180 | | -4x+11=-3x+9 | | 2+5x-19+1=-13x+18+9x | | 30t=10t | | 196.63=7(0.05m+20.70+0.20(20.70) | | 3x²-16x=1344 | | -6x^2-54x-24=0 | | -3a=55+8a | | -6-4x=30 | | 8+0.25t=8 | | -12-6p+2=-6p-10 | | p-(p+16)=4(p-4)+2p | | 2.5+b=-1 | | 30+x=20 |