If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x(x+20)=360
We move all terms to the left:
7x(x+20)-(360)=0
We multiply parentheses
7x^2+140x-360=0
a = 7; b = 140; c = -360;
Δ = b2-4ac
Δ = 1402-4·7·(-360)
Δ = 29680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{29680}=\sqrt{16*1855}=\sqrt{16}*\sqrt{1855}=4\sqrt{1855}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(140)-4\sqrt{1855}}{2*7}=\frac{-140-4\sqrt{1855}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(140)+4\sqrt{1855}}{2*7}=\frac{-140+4\sqrt{1855}}{14} $
| 3x(8+5)=-33 | | 6x^2-10=10x | | 100=35j | | 2x=-15+3 | | 7^3x=5.4 | | -7(x-5)=3 | | 4a+8=4a+8 | | 2n+1=65 | | 35+4x÷4x=35÷4x | | 8=-5/x+8 | | x+3/5=2x/7 | | 3x+32=2 | | 7(n-4)=-42 | | 8z+-20z+11z-16z+-14z=-13 | | 18x-15=15x+15 | | −4w−13=−2w−9 | | 100+.2(x-100)=250 | | 4x+x+x/2+x/2+x-4=+(4x-x/2+x-4) | | (21x3)=7 | | 35j(100)=42j(72) | | 21/2x+2=x | | h2=212 | | 1.7=2y+8.1 | | .2x+100=250 | | 6=y*6 | | 73=1+8y | | 18x-5=17x | | 46-16=5(x-1) | | 8(x+4)=9(x-2) | | 2x(1)=10 | | H(t)=-16t^2+24t+9 | | 32+5y-11=15y-11-2y |