7x+11=x-3/2x=1

Simple and best practice solution for 7x+11=x-3/2x=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x+11=x-3/2x=1 equation:



7x+11=x-3/2x=1
We move all terms to the left:
7x+11-(x-3/2x)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
7x-(+x-3/2x)+11=0
We get rid of parentheses
7x-x+3/2x+11=0
We multiply all the terms by the denominator
7x*2x-x*2x+11*2x+3=0
Wy multiply elements
14x^2-2x^2+22x+3=0
We add all the numbers together, and all the variables
12x^2+22x+3=0
a = 12; b = 22; c = +3;
Δ = b2-4ac
Δ = 222-4·12·3
Δ = 340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{340}=\sqrt{4*85}=\sqrt{4}*\sqrt{85}=2\sqrt{85}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{85}}{2*12}=\frac{-22-2\sqrt{85}}{24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{85}}{2*12}=\frac{-22+2\sqrt{85}}{24} $

See similar equations:

| 7u+4=1 | | 1=s−2 | | 3 = y+22 | | |6x-18|=-6 | | 9^4x-1=7 | | 2(3-y)+3y=8 | | 1=5−2j | | 4(y-7)=5(6 | | -19=-8(-4+a)-(2a+1) | | 7−2h=3 | | -9(y+5)=-7y-43 | | -7y+3(y+4)=-12 | | H=16t^2+95t | | k3− 9= -6 | | x+18+3x=90 | | -3/4x+3/2=-9/7 | | 22.50+17.50h=83.75 | | 3x+85=90 | | 3x+16+85=180 | | 5x-7+-14=58 | | 6x+16=27 | | 4(12)+4x=68 | | 2w−1=5 | | 2.3x-3.8=4/5(2x-15)+2.4 | | 2q−1=3 | | 3.3(13.1r-2.2)=61.1 | | 5x-23=8(x-1) | | 4.9(12.2r-8.4)=26.4 | | -3.7+u6=-22.9 | | 3/a+4=a—1/a | | 3*x+1/2=-1 | | -3=-8+u |

Equations solver categories