7x+12+3x=-6(x-7)*8x

Simple and best practice solution for 7x+12+3x=-6(x-7)*8x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x+12+3x=-6(x-7)*8x equation:



7x+12+3x=-6(x-7)*8x
We move all terms to the left:
7x+12+3x-(-6(x-7)*8x)=0
We add all the numbers together, and all the variables
10x-(-6(x-7)*8x)+12=0
We calculate terms in parentheses: -(-6(x-7)*8x), so:
-6(x-7)*8x
We multiply parentheses
-48x^2+336x
Back to the equation:
-(-48x^2+336x)
We get rid of parentheses
48x^2-336x+10x+12=0
We add all the numbers together, and all the variables
48x^2-326x+12=0
a = 48; b = -326; c = +12;
Δ = b2-4ac
Δ = -3262-4·48·12
Δ = 103972
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{103972}=\sqrt{4*25993}=\sqrt{4}*\sqrt{25993}=2\sqrt{25993}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-326)-2\sqrt{25993}}{2*48}=\frac{326-2\sqrt{25993}}{96} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-326)+2\sqrt{25993}}{2*48}=\frac{326+2\sqrt{25993}}{96} $

See similar equations:

| 8n=7=7n-14 | | 3f^2-31f+10=0 | | 3y+6=54-4 | | 53+x-1/125=0 | | 60=125d | | 3-5n=-3n-1 | | 2(5y–3)=34 | | 11.21=x-3.14 | | 3n−1=8n= | | v(4)=4(40-8)(30-12) | | 9v^2+v-3=0 | | f-1(5)=3 | | 25x+250x=250 | | 3x^2-12=-20 | | 5(-6+k)-2(-3k+1)=-65 | | 3x-4(x-2)=(5+4x) | | 3x-1/2+x/3=5 | | ((x-3)+4)4=((x-6)+5)5 | | 8j-11=61 | | f1(5)=3 | | 2x-4(x-3)=-4+5x | | 25x+250x=4 | | 2x-4(x-3=-4+5x-5 | | -6+-2x=-12 | | 1+2=r | | 3(-7x+4)+4(-5+8x)=-63 | | n/8+1/2=-7/2 | | 2y+5=-15 | | 6/n=114 | | 15n=-19n | | 0.28m=49 | | x*x=(12+4)4 |

Equations solver categories