If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x+14=7x^2
We move all terms to the left:
7x+14-(7x^2)=0
determiningTheFunctionDomain -7x^2+7x+14=0
a = -7; b = 7; c = +14;
Δ = b2-4ac
Δ = 72-4·(-7)·14
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-21}{2*-7}=\frac{-28}{-14} =+2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+21}{2*-7}=\frac{14}{-14} =-1 $
| (7x-31)=60 | | 21/4x+16=8+13/4x | | -2–4k=-10–3k | | (2/3)(1/6)=y | | -10j=-9j+5 | | 6z=-8+7z | | 2a−4=−6 | | -3r=8–4r | | 13/2x+1=5 | | 2-x1=2x+1 | | -10–4g=-2g+8 | | 12-9x=-3(x=10) | | 3x2+4x-20=0 | | 2.79x10-4= | | 16=5+5x+3x | | -7–3m=-10m | | -1=0.6*x | | -x5=x3 | | 2–7j=-8j | | (2x^2-24)/4x=0 | | 6^x=2.1 | | 10y-8=2y+8 | | X/8+x/6=2 | | 3x+1/4-x-3/2=3 | | y=|-1+3|-1 | | Id+6=102 | | 4+3x+6=-10 | | -6–9t=-3t | | t+2=3t−14 | | y=-|-1+3|-1 | | 3-g=-4g | | -6.8x+2.8x=2.88 |