If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x+31=8x-(1/3)(27x+3)
We move all terms to the left:
7x+31-(8x-(1/3)(27x+3))=0
Domain of the equation: 3)(27x+3))!=0We add all the numbers together, and all the variables
x∈R
7x-(8x-(+1/3)(27x+3))+31=0
We multiply parentheses ..
-(8x-(+27x^2+1/3*3))+7x+31=0
We multiply all the terms by the denominator
-(8x-(+27x^2+1+7x*3*3))+31*3*3))=0
We calculate terms in parentheses: -(8x-(+27x^2+1+7x*3*3)), so:We add all the numbers together, and all the variables
8x-(+27x^2+1+7x*3*3)
determiningTheFunctionDomain -(+27x^2+1+7x*3*3)+8x
We get rid of parentheses
-27x^2-7x*3*3+8x-1
We add all the numbers together, and all the variables
-27x^2+8x-7x*3*3-1
Wy multiply elements
-27x^2+8x-63x*3-1
Wy multiply elements
-27x^2+8x-189x-1
We add all the numbers together, and all the variables
-27x^2-181x-1
Back to the equation:
-(-27x^2-181x-1)
-(-27x^2-181x-1)=0
We get rid of parentheses
27x^2+181x+1=0
a = 27; b = 181; c = +1;
Δ = b2-4ac
Δ = 1812-4·27·1
Δ = 32653
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(181)-\sqrt{32653}}{2*27}=\frac{-181-\sqrt{32653}}{54} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(181)+\sqrt{32653}}{2*27}=\frac{-181+\sqrt{32653}}{54} $
| (2/3)x-5=13 | | x-10=-2x+35 | | 5/8(x-4)=2(x+1) | | -91=7(5p-3) | | -54=13-x/3 | | x+60+3x+x+x=360 | | a=3a+115 | | -12+2r+2r=r-3 | | X+6=4x—6 | | 1-3x+2x=-11(x+8)-10(-x-11) | | Y=2.50x18 | | 6+r/6=4 | | 1/5x-1=2 | | 8x-7=8(x+4) | | -6(7x-5)-3=(x-6) | | 3x=93.6 | | 16x+17=8x+1 | | 7x200=x-2 | | (7/(x-8)=(3/x) | | b-8=-8+5b-4b | | 16=4/3(5x+5) | | 4+x/1=4 | | 2(x+)=5x-(3x-6) | | 10x=9x+45 | | 5n+n=50 | | 18+1/2x=-7 | | 5n-n=50 | | 5-8n=8+2-2n-5n | | 8x-7=5x+32 | | -6(7-6b)=138 | | -10+p=-20 | | 3x+x+2x+78=360 |