If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x+3x^2=0
a = 3; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·3·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*3}=\frac{-14}{6} =-2+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*3}=\frac{0}{6} =0 $
| (2x+30)(2x+26)=1596 | | -17+25=-4(x+9) | | 0=-4.9t^2+75t+8 | | 70x+10x5=40 | | 702,585x+10.04x500=402,610 | | 700x+10.50x50=400 | | (x-3)(x+5)=x²+5x-3x-15 | | 7+11=-3(9x-6) | | 42=-7(z-3)* | | 9(p-4)=-18* | | 3(q-7)=27* | | .05/x=100 | | 8x=12x.16 | | –2×+6y=14 | | 3.25+0.5x+1(1)/(3)+(5)/(6)x=5(11)/(12) | | 3⋅x=-255 | | x+5.8=13.9 | | -5x-(-30)=175 | | 7p(5+3p2)−5(2p−8+3p3)=0 | | 2n+7=20+2n | | 25^x=5000 | | 5b+41=-33+2b | | x2-7x+12=12 | | (107+(107+x)(1/2))(1/2)=x. | | 18–5x+2=4(4–2x)+3x | | 2(2x+3)=160 | | 2(2x+3)+90=160 | | 4-6d=6d | | x^2-6x=-209 | | 105t=100+20-5t | | 2p+7=-13+6p | | 105t-5t=120 |