7x+5=(4x-8)4x+3x

Simple and best practice solution for 7x+5=(4x-8)4x+3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x+5=(4x-8)4x+3x equation:



7x+5=(4x-8)4x+3x
We move all terms to the left:
7x+5-((4x-8)4x+3x)=0
We calculate terms in parentheses: -((4x-8)4x+3x), so:
(4x-8)4x+3x
We add all the numbers together, and all the variables
3x+(4x-8)4x
We multiply parentheses
16x^2+3x-32x
We add all the numbers together, and all the variables
16x^2-29x
Back to the equation:
-(16x^2-29x)
We get rid of parentheses
-16x^2+7x+29x+5=0
We add all the numbers together, and all the variables
-16x^2+36x+5=0
a = -16; b = 36; c = +5;
Δ = b2-4ac
Δ = 362-4·(-16)·5
Δ = 1616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1616}=\sqrt{16*101}=\sqrt{16}*\sqrt{101}=4\sqrt{101}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-4\sqrt{101}}{2*-16}=\frac{-36-4\sqrt{101}}{-32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+4\sqrt{101}}{2*-16}=\frac{-36+4\sqrt{101}}{-32} $

See similar equations:

| 1/2+3y=15 | | 7x+5x=(4x-8)x+4x-3x | | 0=0t-5t^2 | | 1=1t-5t^2 | | -69=8t-5t^2 | | X+3/3=1-x+5/5 | | 11+.5=h-5 | | -69=420t-5t^2 | | 10k-4/2-3=4k | | 7=7t-5t^2 | | 2x+5(-2x+5)=-7 | | -14-7x=-18-5x | | -3x/2-5=-11 | | 8=7t-5t^2 | | 2(4x+1)=-3(4x-5)+5x | | 1/6x+7=19 | | x2–10x+25=9 | | 2p-3=7p-13 | | 50=4*x | | (z+7)2=3. | | (7k+8)(-8k−9)=0 | | 2(1+8x)=5(x-4) | | -2(1+7x)=-2x-2(-5+7x) | | 7x(x-3)-14=70 | | 9z-14=4(3z-2) | | 2-n+2-8n=-7(1+4n)+4(-6-4n) | | 7x-6(1-x)=8(x-2) | | x2-5=31 | | -28x+44=7(-4x-4) | | 7x+5=(4x-8)x4x3 | | -5(1+5k)-5(5-7k)=k+4k | | -6(3x-7)+4=-18x+46 |

Equations solver categories