7x+5x=(4x-8)x+4x-3x

Simple and best practice solution for 7x+5x=(4x-8)x+4x-3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x+5x=(4x-8)x+4x-3x equation:



7x+5x=(4x-8)x+4x-3x
We move all terms to the left:
7x+5x-((4x-8)x+4x-3x)=0
We add all the numbers together, and all the variables
12x-((4x-8)x+4x-3x)=0
We calculate terms in parentheses: -((4x-8)x+4x-3x), so:
(4x-8)x+4x-3x
We add all the numbers together, and all the variables
x+(4x-8)x
We multiply parentheses
4x^2+x-8x
We add all the numbers together, and all the variables
4x^2-7x
Back to the equation:
-(4x^2-7x)
We get rid of parentheses
-4x^2+12x+7x=0
We add all the numbers together, and all the variables
-4x^2+19x=0
a = -4; b = 19; c = 0;
Δ = b2-4ac
Δ = 192-4·(-4)·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{361}=19$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-19}{2*-4}=\frac{-38}{-8} =4+3/4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+19}{2*-4}=\frac{0}{-8} =0 $

See similar equations:

| 0=0t-5t^2 | | 1=1t-5t^2 | | -69=8t-5t^2 | | X+3/3=1-x+5/5 | | 11+.5=h-5 | | -69=420t-5t^2 | | 10k-4/2-3=4k | | 7=7t-5t^2 | | 2x+5(-2x+5)=-7 | | -14-7x=-18-5x | | -3x/2-5=-11 | | 8=7t-5t^2 | | 2(4x+1)=-3(4x-5)+5x | | 1/6x+7=19 | | x2–10x+25=9 | | 2p-3=7p-13 | | 50=4*x | | (z+7)2=3. | | (7k+8)(-8k−9)=0 | | 2(1+8x)=5(x-4) | | -2(1+7x)=-2x-2(-5+7x) | | 7x(x-3)-14=70 | | 9z-14=4(3z-2) | | 2-n+2-8n=-7(1+4n)+4(-6-4n) | | 7x-6(1-x)=8(x-2) | | x2-5=31 | | -28x+44=7(-4x-4) | | 7x+5=(4x-8)x4x3 | | -5(1+5k)-5(5-7k)=k+4k | | -6(3x-7)+4=-18x+46 | | 12^3x-1=144 | | 8x+3(1.5x)=306 |

Equations solver categories