7x-1/2x+7=2x-20

Simple and best practice solution for 7x-1/2x+7=2x-20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x-1/2x+7=2x-20 equation:



7x-1/2x+7=2x-20
We move all terms to the left:
7x-1/2x+7-(2x-20)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We get rid of parentheses
7x-1/2x-2x+20+7=0
We multiply all the terms by the denominator
7x*2x-2x*2x+20*2x+7*2x-1=0
Wy multiply elements
14x^2-4x^2+40x+14x-1=0
We add all the numbers together, and all the variables
10x^2+54x-1=0
a = 10; b = 54; c = -1;
Δ = b2-4ac
Δ = 542-4·10·(-1)
Δ = 2956
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2956}=\sqrt{4*739}=\sqrt{4}*\sqrt{739}=2\sqrt{739}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-2\sqrt{739}}{2*10}=\frac{-54-2\sqrt{739}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+2\sqrt{739}}{2*10}=\frac{-54+2\sqrt{739}}{20} $

See similar equations:

| -4×-7=n×-4 | | (1/2x^2-20)^3=-8 | | 6j-9=-2j+7 | | 4x+1/7=2x-1/3 | | 18x-10=350 | | 1/3(9x-24)=8x+12 | | f(5)=50(1.25) | | 4x-1/7=2x-1/3 | | 72/4*x+18/6*x=110*12 | | 3y-11y+5y=0 | | 3d−1=2 | | X(x+23)-10x+9x=0 | | Nx3=N+10 | | 4y^+4y^+17y=0 | | c=0.5/6(120) | | 4y´´+4y´+17y=0 | | (9+v)(2v+3)=0 | | w+6=1/2w+10 | | 10×186x=52 | | c=0.5/6(90) | | 100/x=4/5 | | 4/5/x=100 | | 2x+3-6=5x+1 | | c=0.5/6(60) | | B=2+2+(n-1) | | −1/8(y+2/5)=−3/4(y+1/6) | | c=0.5/6(30) | | 15=10x/2 | | 24-1/2894x0=18-1/28(3x) | | 32y+10-2=# | | 5+(5+10w)/2=3w-1 | | 5+5+10w/2=3w-1 |

Equations solver categories