7x-13=(3x+8)(2x-5)

Simple and best practice solution for 7x-13=(3x+8)(2x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x-13=(3x+8)(2x-5) equation:



7x-13=(3x+8)(2x-5)
We move all terms to the left:
7x-13-((3x+8)(2x-5))=0
We multiply parentheses ..
-((+6x^2-15x+16x-40))+7x-13=0
We calculate terms in parentheses: -((+6x^2-15x+16x-40)), so:
(+6x^2-15x+16x-40)
We get rid of parentheses
6x^2-15x+16x-40
We add all the numbers together, and all the variables
6x^2+x-40
Back to the equation:
-(6x^2+x-40)
We add all the numbers together, and all the variables
7x-(6x^2+x-40)-13=0
We get rid of parentheses
-6x^2+7x-x+40-13=0
We add all the numbers together, and all the variables
-6x^2+6x+27=0
a = -6; b = 6; c = +27;
Δ = b2-4ac
Δ = 62-4·(-6)·27
Δ = 684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{684}=\sqrt{36*19}=\sqrt{36}*\sqrt{19}=6\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{19}}{2*-6}=\frac{-6-6\sqrt{19}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{19}}{2*-6}=\frac{-6+6\sqrt{19}}{-12} $

See similar equations:

| 3-6n-5n=-8 | | 30-v=5v | | 3(x+2)+10=46 | | 10x=5(1/5x+2) | | 1+5r-7=14 | | -4r+6r=-14 | | 7x^2+7=700 | | 3=3+4p+5p | | 10x+5+105=180 | | -(2x-10)=8x | | 3-6b)=6b-5 | | 3n-6n=-32 | | -5+-3r=-5r+9 | | -1m+4m=18 | | F(33)=6x+9 | | 6=1/3w+7/5w-4 | | 18=w/5-13 | | 25x+275=60x+30 | | 2x^2-4=132 | | 12x+24+36+48=180 | | -10.16+5.1x=x-3.6 | | -12g=10g+20 | | 9+3h=4h | | X2+0.00001x-0.000001=0 | | -3r-2=1 | | 2v+14=46 | | 1/13x=5 | | -3r-3=1 | | 5x+63=25 | | 5+m/2=0 | | 4p+4=2+3p+8 | | x^2+10x+22.5=0 |

Equations solver categories