If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x-3x^2=0
a = -3; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·(-3)·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*-3}=\frac{-14}{-6} =2+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*-3}=\frac{0}{-6} =0 $
| 5^x-3=22 | | 40=-0.004x²+50 | | 40=-0.004x^2+50 | | 63/12=15/x | | 18+4x+2=8 | | X^3+30x^2+100x=0 | | X^3+30x^2+100x=60 | | 1^2x+6=9 | | 12a=180-18 | | 12a=180+18 | | v=4v+3 | | 3^(2x+6)=27 | | 3^2x+6=27 | | (4x-6+3x=x) | | 8x+3/16-2x-5/3=13-7x/12 | | 9x^2+7x-96=0 | | x+2x-5=-11 | | 0.8x+1.7=0.6x-0.1 | | x^2+7x-96=0 | | 0.2x-3=(-0.3x+1) | | 123+1/2x=180 | | 5x+5=75, | | 36^4-25x^2+4=0 | | 7(5b+6)=53 | | 139+1/3x=180 | | 3/16(x+1)-5/12(x-4)=2/5(x-6)+5/58 | | 0.3x+137.7=180 | | 5(x-4)=13 | | 16x2-8x+7=0 | | 6a=4H+46=94 | | 3(n-4)+4(n-5)=5(n+2)+16 | | 6x–7=5+2x |