If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+10x+3=0
a = 7; b = 10; c = +3;
Δ = b2-4ac
Δ = 102-4·7·3
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4}{2*7}=\frac{-14}{14} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4}{2*7}=\frac{-6}{14} =-3/7 $
| 4x=6=2x-14 | | 4x+68-15x-35=2 | | 3(x+1)-(5x-5)=12 | | -9-2k=-3k | | 6x2-17x-3=0 | | -4y+7=-5y | | x+0.08x=277 | | 5=1/2.2w | | 2x-14=-(x+3) | | -5=2-h | | -2c+4=-c | | 5/9(f-32)=-14 | | -10-4x=3x-80 | | -10g=5-9g | | 1188=3.14(6)^2h | | 2b=b+8 | | 2y+21=9y | | 9+6w=-9+9w | | 4x+3=-19-7x | | 3x-2/5=-9 | | 4a-3{a-2}=2{3a-2} | | -4n=-6n+8 | | 1188=3.14(36)h | | ((4(4w+4))/5)=1 | | -3x-8=-16-7x | | -7+7u=6u | | 3(d+12)=8+3d | | 6x2=12 | | 6c+5=7c | | -8a—1=-23 | | 9v-5=10v | | 0.3m+3-0.83m=-15 |