If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+14x=0
a = 7; b = 14; c = 0;
Δ = b2-4ac
Δ = 142-4·7·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14}{2*7}=\frac{-28}{14} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14}{2*7}=\frac{0}{14} =0 $
| 3(x+16)3=3 | | 7x^2+49x-6=0 | | 22=m/12 | | 22 = m12 | | -5x-3x-3=14 | | 15x+11x=312 | | 150x=2200 | | 6=8r=3=4 | | a-5=1/10a+4a= | | ∛4x+3=67 | | 4x+2-12x+3x=10-2 | | 7a+5=3a-9 | | u/33,44=1/3.2 | | .23x=56 | | v/33,44=1/3.2 | | 19,2-2,5x=14,7+2,5x | | (x-2)(x+3)(x-3)(x-4)=40 | | 3(x+2)+10=4 | | A+7=3a-2 | | X²-7x+5x-35-(x²-x+9x-9)=63-9x+12 | | c-5=16 | | X^4+35x^2+256=0 | | 36+(-2y+39)+3=(-2y+39)+2y | | (x+5)•(x-7)-(x+9)•(x-1)=9•(7-x)+12 | | -2y^2-9y=-5 | | 3x+20=3x+22 | | y=-2(0.2) | | p/3+3=8 | | 3x+2x^2=14 | | -3(2x+5)+4x=11 | | 5^2-3a=13 | | 5+24x=-4 |