If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+153/200=5
We move all terms to the left:
7x^2+153/200-(5)=0
determiningTheFunctionDomain 7x^2-5+153/200=0
We multiply all the terms by the denominator
7x^2*200+153-5*200=0
We add all the numbers together, and all the variables
7x^2*200-847=0
Wy multiply elements
1400x^2-847=0
a = 1400; b = 0; c = -847;
Δ = b2-4ac
Δ = 02-4·1400·(-847)
Δ = 4743200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4743200}=\sqrt{2371600*2}=\sqrt{2371600}*\sqrt{2}=1540\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-1540\sqrt{2}}{2*1400}=\frac{0-1540\sqrt{2}}{2800} =-\frac{1540\sqrt{2}}{2800} =-\frac{11\sqrt{2}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+1540\sqrt{2}}{2*1400}=\frac{0+1540\sqrt{2}}{2800} =\frac{1540\sqrt{2}}{2800} =\frac{11\sqrt{2}}{20} $
| 2/3(3x+9)=-2(2x+6)= | | –3+2g=–1 | | 6r+2(4r−3)=6+5(r+3) | | 1.8x+32=38.3 | | 34x95=3(14x+9) | | 25x+55-20=0 | | 10k/9+20=0 | | F-3=-f+19 | | s/2=-4 | | 14+5/7x-20=4/7-4 | | 15-3x=4x-34= | | 25x+5+20=5 | | 7(3t+4)=-14 | | -30=4+2a | | 500x+20=0 | | 7p+10=−11 | | -17x^2+70x=0 | | 2x+3+6x-19+3x+17=122 | | (15+2x)*(20+2x)=336 | | 5w+13=18 | | 12-4/5x+3=4 | | 5-5s+2=6-5s | | x³=-215 | | n=4n-2 | | 3n+13=3n+2 | | 9x+7x+4-12x=12 | | x/3−4=10 | | z-7/2=30 | | 12=t/2.5 | | 4/5x=(8+3) | | 0.08(y-5)+0.14y=0.02y-1.5 | | 0=-2y+9 |