7x2+16x-20=0

Simple and best practice solution for 7x2+16x-20=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x2+16x-20=0 equation:



7x^2+16x-20=0
a = 7; b = 16; c = -20;
Δ = b2-4ac
Δ = 162-4·7·(-20)
Δ = 816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{816}=\sqrt{16*51}=\sqrt{16}*\sqrt{51}=4\sqrt{51}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{51}}{2*7}=\frac{-16-4\sqrt{51}}{14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{51}}{2*7}=\frac{-16+4\sqrt{51}}{14} $

See similar equations:

| 16x2+15x+5=0 | | 13x2-11x-2=0 | | 20x2+5x-6=0 | | 8x2-13x+6=0 | | 16x2+11x-11=0 | | 13x2-18x-15=0 | | 11x2+18x-17=0 | | 11x2+9x+17=0 | | 4x2-x-13=0 | | 9x2+x+13=0 | | 19x2+9x-3=0 | | 11x2+4x-10=0 | | 13x2-13x-15=0 | | 3x2+5x-4=0 | | 7x2-4x-5=0 | | 9x2+12x+1=0 | | 10x2-19x-7=0 | | 15x2+12x-8=0 | | 17x2+11x+15=0 | | 2x2+17x-16=0 | | 4x2-12x-6=0 | | 13x2+2x-8=0 | | 20x2-2x+4=0 | | 6(2x+3=42 | | 9/17=36/x | | w+2/4=5 | | 10n+2=43n | | x-25=4x+10=180 | | 8x-2=9x-14=180 | | -(5n-5)+10n=2(5n+40) | | 40x-5x^-0.5=0 | | 5.3=v/7+12.2 |

Equations solver categories