If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+18x+5=0
a = 7; b = 18; c = +5;
Δ = b2-4ac
Δ = 182-4·7·5
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{46}}{2*7}=\frac{-18-2\sqrt{46}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{46}}{2*7}=\frac{-18+2\sqrt{46}}{14} $
| 140=-7x | | (2x)+40=180 | | -2n=8+6n | | 12-3x=4=(-2x) | | -5x=9x+25 | | S=6x+11 | | 5/8x+7/8x+15=1/4x-6 | | x5+7=11 | | (-10p)+2p-(-12p)-(-10)=18 | | 0.2f-14=1 | | .77=7v | | (3x-26)+(2x+24)=180 | | 17n=15n-18 | | 100-2x=80+3x | | 18÷2x=3 | | 3n-2n+n=12 | | 25=3,14r^2 | | 6x-25+6x=25+10 | | 9t+6=10t | | 4p-(-13p)=(-17) | | 4(x+9)=3(x+9) | | 96=180+x | | d+3d-4d+d=9 | | 7a+4-2a=7a+-2a+4 | | 4(3x+9)=-28+4 | | x^2-4x-65=-5 | | 4x-24*9x-3=24x+16 | | 7/10w-18=5.20w | | -7+7p=-91 | | -21x+45=-3x+27 | | 5x(-2)=4x-(-28) | | 8-6x-5-15×=6 |