If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+18x-19=0
a = 7; b = 18; c = -19;
Δ = b2-4ac
Δ = 182-4·7·(-19)
Δ = 856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{856}=\sqrt{4*214}=\sqrt{4}*\sqrt{214}=2\sqrt{214}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{214}}{2*7}=\frac{-18-2\sqrt{214}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{214}}{2*7}=\frac{-18+2\sqrt{214}}{14} $
| 3x=162(+30 | | 12+x+29=89 | | 125+x+30=180 | | x+32.5=50 | | 19x2+17x-10=0 | | 9x2+17x-12=0 | | 18x2-14x-17=0 | | 19x2-15x-12=0 | | 14x2-18x+14=0 | | 4x2+12x-20=0 | | 14x2+5x+9=0 | | 8x2-x-19=0 | | -15x=12.6+3x | | 42/6=x/5 | | 6x2+13x-14=0 | | 13x2+4x+4=0 | | 14x2-x-11=0 | | 15x2+2x+1=0 | | 4x2+20x-3=0 | | 14x2+12x+17=0 | | 14x2+5x-18=0 | | 7x2-19x+13=0 | | 7x2-17x-20=0 | | 12f-14=41 | | 12x/2=36 | | 33-4=33-x | | 10x/2=26 | | 18x2-16x-18=0 | | 17x2-8x-20=0 | | 16x2-20x-8=0 | | 12x2+17x-19=0 | | 17x2-10x+13=0 |