If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+22x+3=0
a = 7; b = 22; c = +3;
Δ = b2-4ac
Δ = 222-4·7·3
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-20}{2*7}=\frac{-42}{14} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+20}{2*7}=\frac{-2}{14} =-1/7 $
| -5y+11=-4(2y+4 | | -4(r-7)=84 | | 2x-9=15-1x | | 2(x–2)=3(x–3) | | 49=1/2(9.8)t^2 | | -8(x+5)=-40+7x | | 6+100k=256 | | 4(2x-3)+10=5(2x-10)+6x | | (7r+6)°=(8r-8)° | | 5-6x=3+4(-5x-3) | | 54=6-6x | | 3(1-9a)+22a=2(2a-9-15 | | j-87=87 | | -6-2n=2(6n-3) | | M=-3n=7 | | x+35=16 | | z-6.8=9.2 | | M=3n=7 | | f-112=36 | | 1/3(9x-2)=1/4(8x+2) | | x/12=180 | | 2x9=3x6= | | n-55.1=20 | | n/2+11=3 | | |-3.5d|=15.4 | | 4(x-2)=100=2(x-2)=50 | | 8−2p=2p+ | | .16666667=-x | | x-16=-39 | | 2x+1/3=-3x+4 | | 5x2+36x+7=0 | | d-67=1.98 |