If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+2x-5=0
a = 7; b = 2; c = -5;
Δ = b2-4ac
Δ = 22-4·7·(-5)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-12}{2*7}=\frac{-14}{14} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+12}{2*7}=\frac{10}{14} =5/7 $
| 6x2-5x=0 | | 10x-(3-5x)=3x+9 | | 8(2x-6)2=0 | | (7x-3)2-(2x+4)2=0 | | x+20=25-0.25x | | 0=105-16x-x^2 | | (3x+7)(x-5)=(x-5)(5x-2) | | 5m+3=4m-8 | | x^2-0.28*x-0.18*0.18=0 | | 2-8x=46 | | x-3=5/3-x | | 42³x+38x=14 | | 4×2³x+3×8x=14 | | x/10+4=-6 | | z/7+2=9 | | 3/20q^2-3Q+17=12.1 | | 70*x=360 | | u/12=4 | | (e+4)×4=36 | | 4(x+1)+8=2-x | | 6,6x=5x-16 | | 56x^2-15x-1=0 | | 4x=2x=8 | | 3x-8=x=4 | | z/7-2=5 | | 3(x+1)-(x-9)+(x-9)+(x+3)=(x+4)+(x+2)-(11-x) | | s2+15s+100=0 | | 3/x=6/4 | | S^2+15s+100=0 | | (Y+1)(y-1)=8 | | x÷5=7 | | 15x+175=15-10x |