If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+38x+40=0
a = 7; b = 38; c = +40;
Δ = b2-4ac
Δ = 382-4·7·40
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(38)-18}{2*7}=\frac{-56}{14} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(38)+18}{2*7}=\frac{-20}{14} =-1+3/7 $
| -8=-5+n/4 | | 27=x/5+4 | | 9x^2-9x+33=0 | | X-62,500=0.25y | | x+4=2(x-1)-3 | | 10.1=x/8 | | 6x+4=8x+6 | | -5x^2+72x-220=0 | | (4a^2+7a-12)+(-9a^2+2a-6)=0 | | -2(x+4)=8x-4 | | (x+3)+(x+4)+2(x+4)+x=25 | | 18=5m-3 | | 0=v+19 | | 2(4-x)=3*(5-2x) | | 4(2z-5)=-4 | | 21x-5+10x+3=147 | | 7=h/9 | | 12x-9=11x | | -12.8=1.6+y/7 | | 1=7(1-3b)= | | 4x-1=-1+2x | | 2x+10+2x+10=3x-18 | | -4(3m+5)=-2(m-2 | | -31+2x=7x+19 | | 2+2.50g=14.50 | | 18.4+28.5+17.6+0.3x=90 | | 9-6x-1=3x+8 | | 40(12+x)=1120 | | 40(12+x)=1080 | | (8x-1)+(7x-14)=180 | | 3(2m)=5(m+1) | | 4-2x=6x+10-8 |