If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+39x+20=0
a = 7; b = 39; c = +20;
Δ = b2-4ac
Δ = 392-4·7·20
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-31}{2*7}=\frac{-70}{14} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+31}{2*7}=\frac{-8}{14} =-4/7 $
| 2m2+3m=2 | | 6m2+m-82=10 | | 9(k+6)=12 | | 3n2+12n+12=0 | | (X)=3x-2x-5 | | z-6.9=7.2-7.3 | | 2-2(1-3k)^(1/2)=4k | | -12s-48=-40 | | X-4=(3/4)x | | 56÷(x-12/8)=8÷0.5 | | 19x-45=16x-24 | | y+24=17y-40 | | y+24=17y40 | | 4x/x=100 | | 6x–4=2x+8 | | 7x÷42=28 | | 2s−6=20 | | 2a+4=-18 | | 7x+21°=90 | | 3+3x+15x=3 | | 20x+5=24×-1 | | 2u-u=u-14 | | 12−k=5 | | 10x+(−11)=5x+18 | | 2x+3×5=11 | | 5x-8-x+6=18 | | p=4.5 | | x+2/2x-x-3/3x=-1/4 | | 17x-11=-13x+23 | | 4/x-3=-5/3-2x | | 4x+16=5x-10 | | 2(x+1)/5-3x-2/4=2/3 |